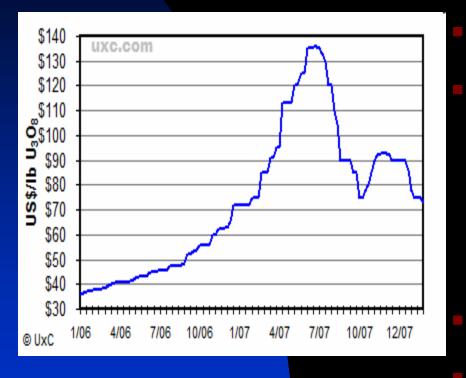
Mesteña Uranium, L.L.C.

Texas Owned

Texas Uranium


Achieving excellence in Health, Safety and Environmental Protection

"URANIUM IS BECOMING THE NEW TEXAS GOLD"

- September 17, 2006 San Antonio Express News

Why is Uranium so Interesting?

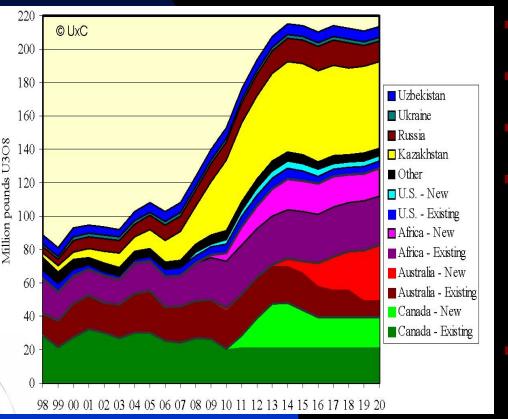
The price of uranium has increased over 1,000% over 2002 levels. Tremendous interest in producing uranium

- Tight supplies after 10 years of very low prices
- Excess inventories dwindled
- Significant supply/demand imbalance for primary production.
- New production is slow to meet growing global demand.
- Mineral royalty owners will benefit directly from the price growth.

Uranium Facts

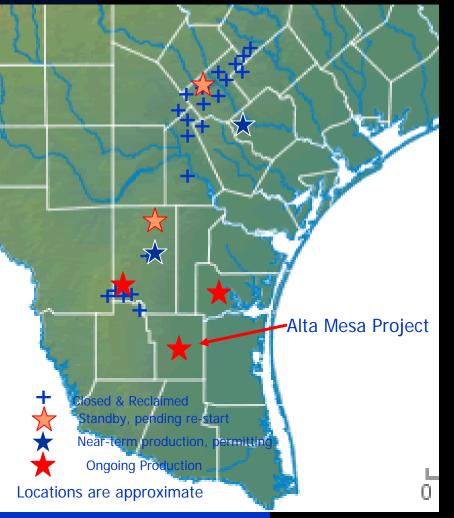
South Texas yellowcake product from the Alta Mesa facility.

- Densest naturally occurring mineral in the world.
- 500 times more abundant than gold.
- Very low radioactivity
- Each drum of uranium has the energy equivalent of:
 - 16,000 bbls of oil
 - ♦ 77 million cu. Ft. of natural gas
 - 1 unit train of coal (10,000 tons of coal)


Nuclear Energy

Steam rising in at the Palo Verde Nuclear Generation facility located outside of Phoenix AZ.

- 105 reactors operating in U.S.
- 31 proposed for construction
- 435 reactors across the globe.
- Nuclear Power provides 20% of the electricity in the U.S.
- The extremely low emissions place nuclear one of the best ways to address atmospheric CO₂.
 - In comparison
 - Each ton of coal produces 2.5 tons of ash and atmospheric emissions per ton of coal burned.
 - Each 1,000 lbs of uranium produces less than 20 lbs of solid waste and zero atmospheric emissions.


Energy Security

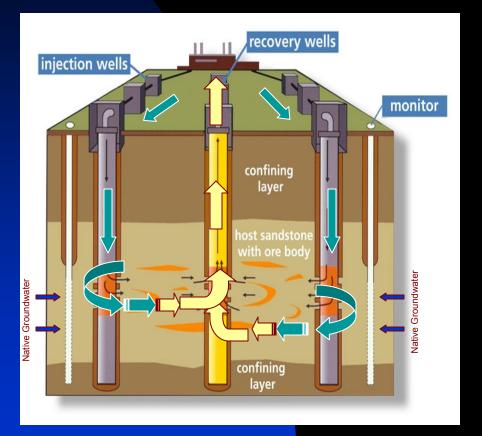
- 100% of the uranium produced is used in civilian nuclear reactor fleet.
- Currently 96% of the fuel burned for domestic use is imported.
- Currently 55% is from megatons to megawatts due to end in 2013
- Without significant growth in U.S. production.
 - U.S. nuclear fleet will be more dependent on imports.
 - As with oil, several potential suppliers may not have the interests of the U.S. as a priority.

As nuclear power continues to grow in importance, the need for security of supply increases in importance.

Texas Uranium

- Uranium Mining in Texas has been around for almost 40 years.
- From the late 1960's through the early 1990's most of the uranium was recovered using conventional mining.
 - Several relatively small surface mines
 - Four conventional mills
 - All are reclaimed and decommissioned
- Texas ISR Uranium
 - Over 10 companies had ISR operations
 - Most operations shut-in by early '90's due to low prices.
 - Almost all sites were restored and decommissioned since that time
- By 1999, all uranium recovery operations shut down
- 2004, the first new ISR operation started, followed by Alta Mesa and the restart of another ISR operation.

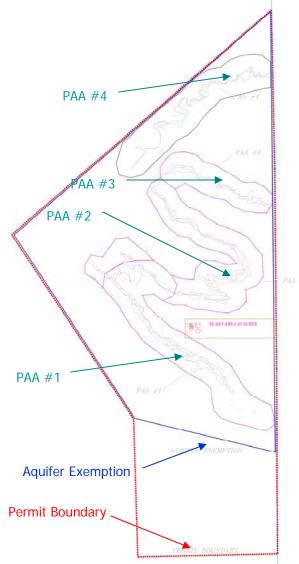
Above: Aerial view of the Sweetwater open pit mine and mill Below: A photo of the wellfield during mining at Alta Mesa


Uranium Mining

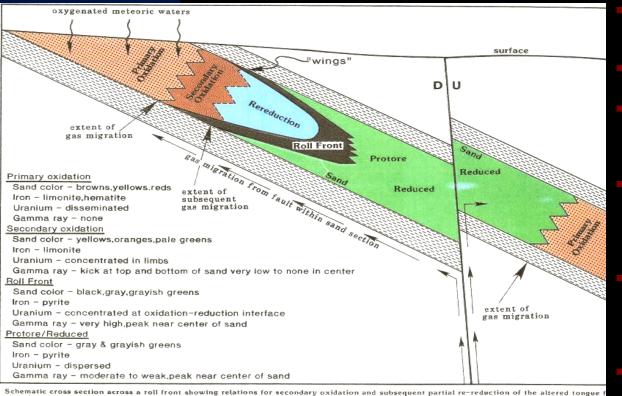
- Conventional Mining
 - Large surface disturbances
 - Tailings generation
 - Large discharges of groundwater
 - Air particulate emissions.

In-Situ recovery

- Minimal surface disturbance
- No tailings
- Minimal impact on groundwater
- Minimal air emissions


In-Situ Uranium Recovery Process

A representation of in-situ uranium recovery.


- Uses uranium's solubility and redox properties for recovery.
- Water and oxygen are injected into the formation.
- The oxidized water forces the uranium into solution.
- The uranium bearing water is recovered and pumped to the surface & transferred to the recovery plant.
- After the recovery plant, the barren water is returned to the field.
- Nearly all of the water used in the process is recycled.
- As a process control, slightly more water is produced than re-injected
 - Termed "process bleed"
 - Creates a pressure sink allowing native groundwater to flow into the wellfield and containing process solutions.

Protecting Groundwater

- Each operator is require by law and its operating permits to protect groundwater, specifically underground source of drinking water.
- Most operators, including Mesteña use a three layered protection program.
 - 1. Process Controls
 - Well by well balancing
 - * Production bleed
 - Groundwater restoration
 - 2. Monitor wells
 - * Early detection of process solution excursion
 - * Detection requires immediate corrective action.
 - 3. Legal Boundaries (Aquifer Exemption)
 - Prevents access to drinking water within exempted area.
 - Requires protection of all sources of drinking water at Aquifer Exemption boundary.
 - Finally, upon completion of production, the groundwater is restored to levels consistent with its prior use.
 - This final act removes any potential source term to contaminating drinking water.

Development of the ore body

Schematic cross section across a roll front showing relations for secondary oxidation and subsequent partial re-reduction of the altered togue f a sandstone containing fault derived, suffide-bearing gas. Pathways of earlier H2S introduction are indicated. (Modified from Adams & Smith, 198)

- Ancient river delta system with uranium distributed through the original deposition.
- Groundwater flow to the southeast (toward the Gulf of Mexico.
- Post depositional faulting introduced gas and other reductants to create a localized geochemical cells.
 - As groundwater continues to move through the system, uranium is redistributed and concentrated on the boundaries of these geochemical cells.
 - The dynamics of the geochemical and hydrological system provides an ideal environment for the development of economic ore bodies.
- The active geochemical conditions creates disequilibrium between U (alpha emitter) and daughters (gamma emitters).

Open hole logging of a drill hole. (above) Typical cutting samples from drilling to 500 ft. (below)

Locating the uranium

- The Alta Mesa deposit was discovered using in-situ gamma surveys from shallow oil wells.
- Drill holes are the primary means for locating our mineral.
- Each drill hole is surveyed for physical geochemical changes.
- Wells are surveyed by wireline:
 - Spontaneous potential, resistivity, and gamma.
 - Cross-sections of logs are used to develop a geologic setting.
- To compensate for disequilibrium conditions, additional assays are required using coring or in-situ assays.

Mesteña primary means for correcting for disequilibrium is in-situ assays using the pulsed fission nuetron tool.

- Mesteña maintains two of these wireline tools.
- The PFN has allowed for more predictable assays of the uranium in a drill hole.
- As a result, the resource estimates have been upgraded for the Alta Mesa project.
- As an indirect means of assessing the effectiveness of the PFN tool, Mesteña has consistently met recovery expectations.

In-Situ Recovery Performance

A plant operator overseeing production activities

2008, Mesteña Uranium, L.L.C.

- In Situ recovery of uranium has a welldocumented performance history.
 - Historically has been a significant economic factor in several South Texas counties.
 - The recovery process used in the U.S. has proven to be safe, clean and efficient.

Over 20 in-situ uranium recovery facilties have operated, produced, reclaimed and returned to the landowner.

- No documented water wells or drinking water supplies have been effected.
- Land returned to its prior use which in most cases was grazing and hunting.
- Property values have increased due to improved infrastructure. (i.e. power lines, telephone, and roads)

The Alta Mesa Project

- Located in southern Brooks County.
 - Economically dependent on oil and gas and ranching.
 - Discovered in the mid 1970's

Four previous Lessees

- Mesteña Uranium LLC.
 - Assumed the project in 1999.
 - Completed licensing and permits in 2002.
 - Commenced project development in 2004.

Brooks County

- Median family income in the county is less than half of the median family income for the State of Texas
- Mesteña is the largest private employer in the county.
- Since 2005, our activities have significantly impacted the county economy in a positive way.
 - * Over 60% of the payroll is local to the County.
 - Mesteña's average wage is nearly twice that for the County.

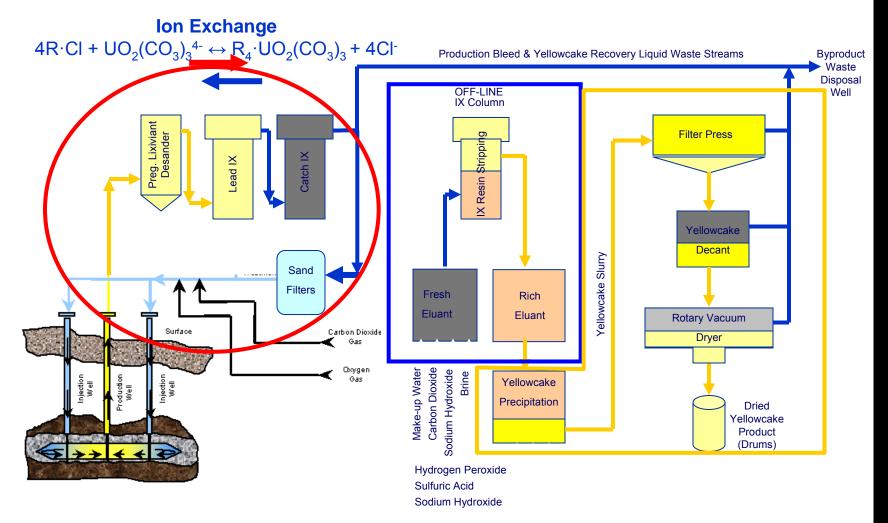
Recovery Plant

A typical production pattern located near the recovery facility.

Central processing plant design.

Uses ion exchange recovery.

Proven up-flow Ion Exchange Technology.


1 million lb annual rate capacity.

- Expansion plans to 1.5 million lb/year rate underway.
- Reliable batch processing of yellowcake.
- Two zero-emission rotary vacuum dryers (2.5 million lb/year throughput capacity).
- Demonstrated consistent and predictable operations.

ISL Process

URANIUM EXTRACTION

YELLOWCAKE RECOVERY

Restoration Operations

- Groundwater restoration consists of the following:
 - Reverse Osmosis process removes most of the salts elevated during mining.
 - Permeate water (99.5% pure water) is injected into the formation.
 - Reject water, the remaining salts, is disposed in the disposal well.
 - The volume of reject water is replenished by native groundwater.
- The goal of this process is to return the groundwater quality to levels considered protective of drinking water sources at Aquifer Exemption boundary.
- Groundwater restoration of the depleted areas started 4Q2006.
- Our current restoration effort has been very successful

Licenses & Permits

A permitted Class I disposal well for process effluents

Current Permits & License

Texas Commission on Environmental Quality

- Class III UIC Permit
- Three Production Area Authorizations
- Two Class I injection well permits
- Radioactive Materials License

Railroad Commission of Texas

Uranium Exploration Permit

Department of State Health Services

Sealed Source License

Development Activities

Wellfield Development drilling activities. (above)

Wellfield piping and instrumentation. (below)

- 10 drill rigs are being used for development of the Alta Mesa Project.
- Wellfield Development
 - Installation and completion of wells
 - Piping and operational preparation.
 - Project development
 - Delineation drilling
 - Monitor well installation to extend permit areas.
 - Development drilling of newly identified ore trends

Exploration & Development

Exploration drilling in Jim Hogg County

- Locating additional and new uranium resources is a key part of sustaining development.
 - Extends known resource estimates.
 - Extends operational life.
 - Sustains workforce experience.
- Exploration drilling is regulated by the Railroad Commission of Texas.
 - Requirements for environmental protection.
 - Requirements for reclamation and closure.
- Mesteña Uranium is pursuing an extensive exploration program to extend the life of the Alta Mesa Project.

Our Achievements

For the last two years, the largest producer of uranium in Texas

2nd Largest producer of uranium in the U.S.

Maintained an excellent compliance record.

- Regular inspections with no significant issues.
- No environmental releases.
- A record of safe work for employees and contractors